A Characterization Study of Arabic Twitter Data with a Benchmarking for State-of-the-Art Opinion Mining Models
نویسندگان
چکیده
Opinion mining in Arabic is a challenging task given the rich morphology of the language. The task becomes more challenging when it is applied to Twitter data, which contains additional sources of noise, such as the use of unstandardized dialectal variations, the nonconformation to grammatical rules, the use of Arabizi and code-switching, and the use of non-text objects such as images and URLs to express opinion. In this paper, we perform an analytical study to observe how such linguistic phenomena vary across different Arab regions. This study of Arabic Twitter characterization aims at providing better understanding of Arabic Tweets, and fostering advanced research on the topic. Furthermore, we explore the performance of the two schools of machine learning on Arabic Twitter, namely the feature engineering approach and the deep learning approach. We consider models that have achieved state-of-the-art performance for opinion mining in English. Results highlight the advantages of using deep learning-based models, and confirm the importance of using morphological abstractions to address Arabic’s complex morphology.
منابع مشابه
Forecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data
Today, social networks are fast and dynamic communication intermediaries that are a vital business tool. This study aims at examining the views of those involved with Facebook stocks so that we can summarize their views to predict the general behavior of this stock and collectively consider possible Facebook stock price movements, and create a more accurate pattern compared to previous patterns...
متن کاملA High-Performance Model based on Ensembles for Twitter Sentiment Classification
Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...
متن کاملOpinion Analysis for Twitter and Arabic Tweets: a Systematic Literature Review Mnahel
The objective of this paper is to present the current evidence relative to twitter opinion mining in general and also the current state of Arabic tweets’ opinion mining. The researcher performed a systematic literature review (SLR) to investigate features and methods used for twitter opinion mining and if those features and methods have been used for Arabic tweets opinion mining. Sixty five pap...
متن کاملحسنگار : شبکه واژگان حسی فارسی
Awareness of others' opinions plays a crucial role in the decision making process performed by simple customers to top-level executives of manufacturing companies and various organizations. Today, with the advent of Web 2.0 and the expansion of social networks, a vast number of texts related to people's opinions have been created. However, exploring the enormous amount of documents, various opi...
متن کاملDesign and Test of the Real-time Text mining dashboard for Twitter
One of today's major research trends in the field of information systems is the discovery of implicit knowledge hidden in dataset that is currently being produced at high speed, large volumes and with a wide variety of formats. Data with such features is called big data. Extracting, processing, and visualizing the huge amount of data, today has become one of the concerns of data science scholar...
متن کامل